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Stability of a potential vortex with a non-rotating and 
rigid-body rotating top-hat jet core 
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The stability of a potential vortex with a rotating and a non-rotating jet core 
is analysed. Eigenvalues are calculated numerically for different values of the 
ratio of the strength of the vortex to the axial velocity. These results show that 
the potential vortex becomes unstable in the presence of a jet. 

1. Introduction 
Since the introduction of large aircraft for commercial transport, the stability 

of vortex flows has become of some importance. In  particular, trailing vortices 
from the wing tips of large aeroplanes pose a threat to light planes and hence it is 
of interest to study the decay of such flows. 

The first investigation of circular vortex flows was done by Kelvin (1880), 
who obtained approximate expressions for the simple harmonic frequencies, 

Rayleigh (1916) derived a necessary and sufficient condition for the stability 
of inviscid revolving fluids, namely that the circulation must increase outwards. 
This criterion applied to an infinite potential vortex predicts stability. 

Ponstein (1959) examined the instability of rotating cylindrical jets including 
the effects of viscosity, surface tension and the surrounding air. He showed that, 
if the viscosity and the influence of the surrounding air are neglected, non- 
rotationally symmetric disturbances are sometimes more unstable than rota- 
tionally symmetric ones, and that the rotating jet becomes more stable as it 
rotates faster. 

The stability of axisymmetric jets was investigated by Batchelor & Gill (1962), 
who derived a necessary condition for the amplification of the disturbances. The 
condition shows that a top-hat jet profile is unstable for both axisymmetric and 
non-axisymmetric disturbances. 

Many other investigators have studied the stability of vortex flows. Crow (1970) 
analysed the stability of a pair of trailing vortices during the early growth stage. 
Both symmetric and antisymmetric eigenmodes were shown to be unstable. 
Parks (1970) modified Crow’s theory to take into account finite core radii. 
Widnall & Bliss (1971) considered this same problem for a long wavelength 
disturbance only. 

In  this paper, we consider the stability of a potential vortex in the presence of 
a rotating and non-rotating axial jet. The influence of the ratio of the strength 
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of the vortex to the axial velocity of the jet has been determined. Numerical 
values of the growth rates have been obtained, and it is shown that a rotating 
axial jet makes the potential vortex unstable. 

2. Mathematical analysis 
The equations governing the behaviour of an inviscid incompressible fluid read 

v.u = 0, (1) 

(2) 
au 1 
- + V(*U. U) - u x v x u = -1 VP.  
at P 

As only non-radial mean flows are considered, the velocity components in the 
r,  0 and z directions, respectively, may be written as 

U1=Uf, u2= V+w‘, U,= W+W’, (3) 

with 

where V and W are mean flow velocities and the ‘primed’ quantities represent 
disturbance velocities. 

V = V ( r ) ,  W = constant, d, w’, w’ = d, w‘, w’(r, B,z, t ) ,  

If we assume the disturbances to be of the following form: 

{P’/P, u’, w I ,  w‘} = { 4 M ( r ) ,  g ( 9 ,  h(r)}exp [in0 + ia(z - c01, (4) 

where p’ is the pressure disturbance and p the density of the fluid, the linearized 
disturbance equations are 

l d  9 
- - (rf) +in- r + iah = 0, 
r dr (continuity), 

(momentum). (7) 

- iar = {ih[( V/ r )  n + ( W - c )  a]} (8)  

The mean velocity components for the jet and the potential vortex are assumed 
to be of the form 

(9) 

(10) 

For the region 0 < r 6 ro, the linearized equations (5)-(8) can be combined 
to give 

d dr (re) dr + (pz-?) h = 0, 

with 

The only solution bounded at r = 0 is a modified Bessel function of the &st kind: 

p2 = a2{1 - 4S22pn + ( W - c)  my}. (12) 

h = C1In(pT), (13) 
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and therefore = ---I [ Q w  + (W - c )  a1 C l U P ) ,  (14) 

where C, is an arbitrary constant. 
In  the case of no rigid-body rotation (Q = 0 ) ,  p = a and one obtains 

h = CIIn(ar), (16) 

(17) 

7~ = - (W-c)CIIn(ar) .  (18) 

l a  
a dr 

f = - iCl - - In(ar), 

For the outer region r ro the equation governing the axial velocity disturbance 
h is 

The only solution bounded at  infinity is a Bessel function of second kind: 

h(r) = C,K,(ar) (20) 

and n= = a (ox-?) C,K,(ar), (21) 

i d  f = ---%Kn(ar). 

We consider the system formed by a rotating jet for r < ro and a potential vortex 
for r 2 ro. The flow being inviscid, the discontinuity at  r = ro is regarded as 
a cylindrical vortex sheet of infinite vorticity. 

The radius of the perturbed vortex sheet can be expressed as 

R = ro + 6, where 6 = A exp i[nO + a(z - c t ) ] .  

The steady-state pressures can be obtained from (2 ) .  They are 

Fl = @QV+ Ci for the jet 
- and p - - -1-r2 z p  I r2 +Ci for thevortex. 

In the unperturbed state, the two pressures are equal on the surface of dis- 
continuity. In  the perturbed state, the pressure must be continuous through the 

(23)  vortex sheet: 

Linearizing and substituting for the disturbances we get 

Fl(ro + 6) +pi = F2(r,, + 6) +p;. 

Q2roA -aa-l[Qn+ (W-c)a]CIIn(pr,,) 
1 I'n 

TO 
- ( $ A  faac-? C,K,(ar,) 

The rate of change of displacement of the vortex sheet must equal the radial 
velocity in the vortex and the jet: 

= ;+ (U. V) 6 = d. (25)  Dt 



462 M .  Lessen, N .  V .  Deshpmde and 3. Hadji-Ohanes 

a* 

0.6 
0.5 
0.4 
0.3 * 
0.2 
0.1 
0 

U* 

0 0.5 1 .o 0 1 2 3 4 5 6 7 8 9  

U* a* 

FIGURES 1 (a-d). For legend see facing page. 

From (9), (15), (21) and (25), it follows that 

r=ro 
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FIGURE I. Phase velocity and growth rate for (a) n, = - 2, (b )  n. = - I, (c) n. = 0, (d)  n, = 1 
and (e) n, = 2 for different values of I?* (numbers on curves) in the non-rotating case 
(a* = O).--- , c r ; -  * , c;. 

Equations (24), (26) and (27) give the following eigenvalue equation: 

- a*-l[Q*n + (1 - c*) a*I2 = 0, (28) 
where a* = a?,, C* = C / W ,  r* = r/ro W ,  Q* = QY,/W,  

,u*2 = a*2 [1-4Q*2/(Q*n+(l-c*)a*)2]  

(a prime denotes differentiation with respect to the argument). This equation 
reduces to that obtained by Batchelor & Gill for Q* = r* = 0. 

A special case of interest is the system consisting of a vortex with a non- 
rotating jet core (a* = 0); equation (28) becomes a quadratic equation for the 
phase velocity c* and solving for c*, one obtains 

In  this last case the condition for instability is simply that 
A < 0. 
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FIGURE 2. &utral-stability curves for the non-rotating jet core (a* = 0). 

3. Calculations and results? 
The eigenvalue problem has been solved numerically. The growth rates have 

been computed for a non-rotating and rotating jet core with no discontinuity in 
the tangential velocity (a* = r*) for different values of I?*. 

For the rotating jet core, as the argument of the modified Bessel function I, is 
complex and depends on the eigenvalue, an iterative procedure was used to 
determine the latter. The n = 0, & 1 and _+ 2 wave modes have been considered. 

For the non-rotating jet, figure 1 shows the phase velocities and the growth 
rates for different values of r*. As was indicated previously, the non-rotating 
jet becomes neutrally stable when A, as defined in (30)) becomes equal to zero. 
This equation gives a relationship between I?* and a* which can be used to obtain 
neutral-stability curves, which are shown in figure 2, for different values of n. 
From this figure, one can obtain the range of values of a*, for given values of I?* 
and n, for which the flow is stable. Although it is not apparent from the neutral- 
stability curves, the flow always becomes unstable for all values of r* and n in 
the limit a*+co. This can be seen from (29), which shows that, in the limit 
a*+co, c* = 1/2( l  +i).  This last result could have been anticipated as short 
waves are not influenced by the curvature and so behave as in Helmholtz 
instability. 

Figure 3 shows the phase velocities and growth rates for the vortex with 
a rotating jet core. The flow is unstable for axisymmetric disturbances for all 

t While this paper was in preparation, an article by Uberoi, Chow & Narain (1972) 
covering somewhat the same topic appeared. They derived approximate expressions for 
the eigenvalue c* valid for very small and very large wavenumbers. In  our paper all values 
of wavenumbers are explored along with rotating-core cases. 
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FIGURE 3. Phase velocity and growth rate for (a)  n = - 2, (b )  n= - 1, (c) .n = 0, (d) .n = 1 
and ( e )  n = 2 for different values of I?* (numbers on curves) for the rotating core. 
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values of F* and a*. I n  the non-axisymmetric case for small values of I'*, the 
flow is stable for small a*. The value of a* at which the flow becomes unstable 
increases as I?* increases. However, beyond a certain value of I'*, an additional 
range of wavenumbers at which the flow becomes unstable develops. This range 
also increases as I?* increases. This trend can be seen from figures 3 ( d )  and (e).  
In  the range of stable wavenumbers, there are two or possibly more values of c* 
that satisfy the eigenvalue equation; we have computed two real values of c* for 
I?* = 0.4 and n = 2. In  both cases, modes with negative values of n are more 
unstable than those with positive n. 

This work was partly supported by a grant from the National Science 
Foundation. 
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